Monday 18 December 2017

Ruchomy średni model stacjonarny


Modele z ruchomą średnią i wykładniczą wygładzaniem Jako pierwszy krok w wychodzeniu poza modele średnie, modele spacerów losowych i modele trendów liniowych, wzorce i trendy niesezonowe można ekstrapolować za pomocą modelu ruchomego lub wygładzającego. Podstawowym założeniem modeli uśredniania i wygładzania jest to, że szeregi czasowe są lokalnie stacjonarne z wolno zmieniającą się średnią. W związku z tym bierzemy średnią ruchomą (lokalną), aby oszacować aktualną wartość średniej, a następnie wykorzystać ją jako prognozę na najbliższą przyszłość. Można to uznać za kompromis pomiędzy modelem średnim a modelem losowego chodzenia bez dryftu. Ta sama strategia może zostać wykorzystana do oszacowania i ekstrapolacji lokalnego trendu. Średnia ruchoma jest często nazywana wersją quotsmoothedquot oryginalnej serii, ponieważ krótkoterminowe uśrednianie ma wpływ na wygładzenie nierówności w oryginalnej serii. Dostosowując stopień wygładzenia (szerokość średniej ruchomej) możemy mieć nadzieję na uzyskanie optymalnej równowagi między wydajnością modeli średniej i losowej. Najprostszym rodzajem modelu uśredniającego jest. Prosta (równo ważona) Średnia ruchoma: Prognoza wartości Y w czasie t1, która jest dokonywana w czasie t, jest równa prostej średniej z ostatnich obserwacji: (Tu i gdzie indziej będę używał symbolu 8220Y-hat8221, aby stać dla prognozy szeregu czasowego Y dokonanego najwcześniej jak to możliwe wcześniej przez dany model.) Ta średnia jest wyśrodkowana w okresie t - (m1) 2, co oznacza, że ​​oszacowanie średniej lokalnej będzie opóźniać się w stosunku do rzeczywistej wartości wartość średniej lokalnej o około (m1) 2 okresy. Tak więc, mówimy, że średni wiek danych w prostej średniej kroczącej wynosi (m1) 2 w stosunku do okresu, dla którego obliczana jest prognoza: jest to ilość czasu, o którą prognozy będą się opóźniać za punktami zwrotnymi w danych . Na przykład, jeśli uśrednisz 5 ostatnich wartości, prognozy będą o około 3 opóźnienia w odpowiedzi na punkty zwrotne. Zauważ, że jeśli m1, model prostej średniej ruchomej (SMA) jest równoważny modelowi chodzenia swobodnego (bez wzrostu). Jeśli m jest bardzo duże (porównywalne z długością okresu szacowania), model SMA jest równoważny modelowi średniemu. Podobnie jak w przypadku każdego parametru modelu prognostycznego, zwyczajowo koryguje się wartość k, aby uzyskać najlepsze dopasowanie do danych, tj. Średnio najmniejsze błędy prognozy. Oto przykład serii, która wydaje się wykazywać losowe fluktuacje wokół wolno zmieniającej się średniej. Po pierwsze, spróbujmy dopasować go do modelu losowego spaceru, który jest odpowiednikiem prostej średniej kroczącej z 1 słowa: model losowego spaceru bardzo szybko reaguje na zmiany w serii, ale czyniąc to, wybiera dużą część quota w tekście. dane (fluktuacje losowe), a także quotsignalquot (średnia miejscowa). Jeśli zamiast tego spróbujemy prostej średniej kroczącej z 5 terminów, otrzymamy gładszy zestaw prognoz: Pięciokrotna prosta średnia ruchoma daje znacznie mniejsze błędy niż model losowego spaceru w tym przypadku. Średni wiek danych w tej prognozie wynosi 3 ((51) 2), więc ma tendencję do pozostawania w tyle za punktami zwrotnymi o około trzy okresy. (Na przykład, pogorszenie koniunktury zdaje się mieć miejsce w okresie 21, ale prognozy nie zmieniają się aż do kilku kolejnych okresów.) Zwróć uwagę, że długoterminowe prognozy z modelu SMA są prostą poziomą, tak jak w przypadku losowego spaceru Model. Tak więc model SMA zakłada, że ​​nie ma trendu w danych. Jednakże, podczas gdy prognozy z modelu losowego spaceru są po prostu równe ostatniej obserwowanej wartości, prognozy z modelu SMA są równe średniej ważonej ostatnich wartości. Limity ufności obliczone przez Statgraphics dla długoterminowych prognoz prostej średniej kroczącej nie stają się szersze wraz ze wzrostem horyzontu prognozy. To oczywiście nie jest poprawne Niestety, nie istnieje żadna podstawowa teoria statystyczna, która mówi nam, w jaki sposób przedziały ufności powinny poszerzyć się dla tego modelu. Jednak nie jest zbyt trudno obliczyć empiryczne szacunki limitów zaufania dla prognoz o dłuższym horyzoncie. Można na przykład skonfigurować arkusz kalkulacyjny, w którym model SMA byłby używany do prognozowania 2 kroków do przodu, 3 kroków do przodu itp. W próbie danych historycznych. Następnie można obliczyć standardowe odchylenia standardowe błędów w każdym horyzoncie prognozy, a następnie skonstruować przedziały ufności dla prognoz długoterminowych, dodając i odejmując wielokrotności odpowiedniego odchylenia standardowego. Jeśli spróbujemy 9-dniowej prostej średniej kroczącej, otrzymamy jeszcze bardziej wygładzone prognozy i większy efekt opóźniający: Średni wiek to teraz 5 okresów ((91) 2). Jeśli weźmiemy 19-dniową średnią ruchomą, średni wiek wzrośnie do 10: Należy zauważyć, że w rzeczywistości prognozy obecnie pozostają w tyle za punktami zwrotnymi o około 10 okresów. Jaka ilość wygładzania jest najlepsza dla tej serii Oto tabela, która porównuje ich statystyki błędów, w tym także średnią 3-dniową: Model C, 5-punktowa średnia ruchoma, daje najniższą wartość RMSE o niewielki margines w porównaniu z 3 - term i 9-term średnich, a ich inne statystyki są prawie identyczne. Tak więc, wśród modeli z bardzo podobnymi statystykami błędów, możemy wybrać, czy wolelibyśmy nieco większą reakcję, czy nieco większą płynność w prognozach. (Powrót do początku strony.) Browns Simple Exponential Smoothing (wykładniczo ważona średnia ruchoma) Opisany powyżej prosty model średniej ruchomej ma niepożądaną właściwość, że traktuje ostatnie k obserwacji równo i całkowicie ignoruje wszystkie poprzednie obserwacje. Intuicyjnie, przeszłe dane powinny być dyskontowane w bardziej stopniowy sposób - na przykład ostatnia obserwacja powinna mieć nieco większą wagę niż druga ostatnia, a druga ostatnia powinna mieć nieco większą wagę niż trzecia ostatnia; wkrótce. Wykonywany jest prosty model wygładzania wykładniczego (SES). Niech 945 oznacza stałą kwotową (liczbę od 0 do 1). Jednym ze sposobów napisania modelu jest zdefiniowanie serii L, która reprezentuje aktualny poziom (tj. Miejscową średnią wartość) serii oszacowanej na podstawie danych do chwili obecnej. Wartość L w czasie t jest obliczana rekurencyjnie z jego własnej poprzedniej wartości w następujący sposób: Zatem bieżącą wygładzoną wartością jest interpolacja między poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie 945 kontroluje bliskość interpolowanej wartości do najnowszej. obserwacja. Prognoza na następny okres jest po prostu bieżącą wygładzoną wartością: Równoważnie, możemy wyrazić następną prognozę bezpośrednio w odniesieniu do wcześniejszych prognoz i poprzednich obserwacji, w dowolnej z następujących równoważnych wersji. W pierwszej wersji prognozą jest interpolacja między poprzednią prognozą i poprzednią obserwacją: w drugiej wersji następna prognoza jest uzyskiwana przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu o wartość 945. jest błąd popełniony przy czas t. W trzeciej wersji prognozą jest ważona ruchoma średnia ważona wykładniczo (tj. Zdyskontowana) ze współczynnikiem dyskontowym 1- 945: Wersja interpolacyjna formuły prognostycznej jest najprostsza do zastosowania, jeśli wdraża się model w arkuszu kalkulacyjnym: pasuje on do pojedyncza komórka i zawiera odwołania do komórek wskazujące poprzednią prognozę, poprzednią obserwację i komórkę, w której przechowywana jest wartość 945. Należy zauważyć, że jeśli model 945 1, model SES jest równoważny modelowi chodzenia swobodnego (bez wzrostu). Jeśli 945 0, model SES jest równoważny modelowi średniemu, przy założeniu, że pierwsza wygładzona wartość jest równa średniej. (Powrót do początku strony.) Średni wiek danych w prognozie wygładzania prostego wykładniczego wynosi 1 945 w stosunku do okresu, dla którego obliczana jest prognoza. (To nie powinno być oczywiste, ale można je łatwo wykazać, oceniając nieskończoną serię.) Dlatego prosta prognoza średniej ruchomej ma tendencję do pozostawania w tyle za punktami zwrotnymi o około 1 945 okresów. Na przykład, gdy 945 0,5 opóźnienie wynosi 2 okresy, gdy 945 ± 0,2 opóźnienie wynosi 5 okresów, gdy 945 ± 0,1 opóźnienie wynosi 10 okresów, i tak dalej. Dla danego średniego wieku (to jest ilości opóźnienia), prosta prognoza wygładzania wykładniczego (SES) jest nieco lepsza od prognozy prostej średniej ruchomej (SMA), ponieważ umieszcza względnie większą wagę w najnowszej obserwacji - ie. jest nieco bardziej obojętny na zmiany zachodzące w niedawnej przeszłości. Na przykład model SMA z 9 terminami i model SES z 945 0.2 mają średnią wieku 5 lat dla danych w swoich prognozach, ale model SES przykłada większą wagę do ostatnich 3 wartości niż model SMA i do w tym samym czasie nie ma on całkowicie 8220forget8222 o wartościach większych niż 9 okresów, jak pokazano na tym wykresie: Kolejną ważną zaletą modelu SES w porównaniu z modelem SMA jest to, że model SES używa parametru wygładzania, który jest nieustannie zmienny, dzięki czemu można go łatwo zoptymalizować za pomocą algorytmu quotsolverquot, aby zminimalizować błąd średniokwadratowy. Optymalna wartość 945 w modelu SES dla tej serii okazuje się być 0,2961, jak pokazano tutaj: Średni wiek danych w tej prognozie wynosi 10,2961 3,4 okresów, co jest podobne do 6-okresowej prostej średniej kroczącej. Prognozy długoterminowe z modelu SES są prostą poziomą. jak w modelu SMA i modelu chodzenia bez wzrostu. Należy jednak zauważyć, że przedziały ufności obliczone przez Statgraphics teraz rozchodzą się w rozsądny sposób, i że są one znacznie węższe niż przedziały ufności dla modelu losowego spaceru. Model SES zakłada, że ​​seria jest w pewnym stopniu przewidywalna, podobnie jak model losowego spaceru. Model SES jest w rzeczywistości szczególnym przypadkiem modelu ARIMA. więc teoria statystyczna modeli ARIMA zapewnia solidną podstawę do obliczania przedziałów ufności dla modelu SES. W szczególności model SES jest modelem ARIMA z jedną niesezonową różnicą, terminem MA (1) i nie ma stałego okresu. inaczej znany jako model DAIMA (0,1,1) bez stałej wartości. Współczynnik MA (1) w modelu ARIMA odpowiada ilości 1-945 w modelu SES. Na przykład, jeśli dopasujesz model ARIMA (0,1,1) bez stałej do analizowanej tutaj serii, szacowany współczynnik MA (1) okaże się równy 0,7029, czyli prawie dokładnie jeden minus 0,2961. Możliwe jest dodanie do modelu SES założenia niezerowego stałego trendu liniowego. Aby to zrobić, po prostu określ model ARIMA z jedną niesezonową różnicą i terminem MA (1) ze stałą, tj. Model ARIMA (0,1,1) ze stałą. Prognozy długoterminowe będą miały tendencję równą średniej tendencji obserwowanej w całym okresie szacowania. Nie można tego zrobić w połączeniu z korektą sezonową, ponieważ opcje korekty sezonowej są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stały, długotrwały trend wykładniczy do prostego modelu wygładzania wykładniczego (z korektą sezonową lub bez niego) za pomocą opcji korekty inflacji w procedurze prognozowania. Odpowiednia stopa inflacji (procent wzrostu) na okres może być oszacowana jako współczynnik nachylenia w liniowym modelu trendu dopasowany do danych w połączeniu z logarytmem naturalnym, lub może być oparty na innych, niezależnych informacjach dotyczących długoterminowych perspektyw wzrostu . (Powrót do początku strony.) Browns Linear (tzn. Podwójnie) Exponential Smoothing Modele SMA i modele SES zakładają, że nie ma żadnego trendu w danych (co jest zwykle w porządku lub przynajmniej niezbyt dobre dla 1- prognozy wyprzedzające, gdy dane są stosunkowo hałaśliwe) i mogą być modyfikowane w celu włączenia stałego trendu liniowego, jak pokazano powyżej. A co z trendami krótkoterminowymi Jeśli w serii pojawiają się zmienne stopy wzrostu lub cykliczny wzór, który wyraźnie odróżnia się od hałasu, i jeśli istnieje potrzeba przewidywania z wyprzedzeniem dłuższym niż 1 okres, wówczas można również oszacować trend lokalny. problem. Prosty model wygładzania wykładniczego można uogólnić w celu uzyskania liniowego modelu wygładzania wykładniczego (LES), który oblicza lokalne oszacowania zarówno poziomu, jak i trendu. Najprostszym modelem trendu zmiennym w czasie jest liniowy model wygładzania wykładniczego Browns, który wykorzystuje dwie różne wygładzone serie, które są wyśrodkowane w różnych punktach czasowych. Formuła prognozowania opiera się na ekstrapolacji linii przez dwa ośrodki. (Bardziej wyrafinowana wersja tego modelu, Holt8217s, jest omówiona poniżej.) Algebraiczna postać liniowego modelu wygładzania wykładniczego Brown8217, podobnie jak model prostego wykładniczego wygładzania, może być wyrażana w wielu różnych, ale równoważnych formach. "Norma" w tym modelu jest zwykle wyrażana następująco: Niech S oznacza serie wygładzone pojedynczo, otrzymane przez zastosowanie prostego wygładzania wykładniczego dla szeregu Y. Oznacza to, że wartość S w okresie t jest określona przez: (Przypomnijmy, że w prostym wygładzanie wykładnicze, to byłaby prognoza dla Y w okresie t1.) Następnie pozwól oznaczać podwójnie wygładzoną serię uzyskaną przez zastosowanie prostego wygładzania wykładniczego (używając tego samego 945) do serii S: Na koniec, prognozy dla Y tk. dla każdego kgt1, jest podana przez: To daje e 1 0 (to jest trochę oszukiwać, i niech pierwsza prognoza równa się faktycznej pierwszej obserwacji), i e 2 Y 2 8211 Y 1. po którym prognozy są generowane za pomocą równania powyżej. Daje to takie same dopasowane wartości, jak formuła oparta na S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1. Ta wersja modelu jest używana na następnej stronie ilustrującej połączenie wygładzania wykładniczego z korektą sezonową. Holt8217s Linear Exponential Smoothing Brown8217s Model LES oblicza lokalne oszacowania poziomu i trendu, wygładzając najnowsze dane, ale fakt, że robi to za pomocą pojedynczego parametru wygładzania, nakłada ograniczenia na wzorce danych, które może dopasować: poziom i trend nie mogą się różnić w niezależnych stawkach. Model LES Holt8217s rozwiązuje ten problem, włączając dwie stałe wygładzania, jedną dla poziomu i drugą dla trendu. W każdej chwili t, jak w modelu Brown8217s, istnieje oszacowanie Lt poziomu lokalnego i oszacowanie T t trendu lokalnego. Tutaj są one obliczane rekurencyjnie od wartości Y obserwowanej w czasie t oraz poprzednich oszacowań poziomu i trendu za pomocą dwóch równań, które oddzielnie stosują wygładzanie wykładnicze. Jeżeli szacowany poziom i tendencja w czasie t-1 to L t82091 i T t-1. odpowiednio, wówczas prognoza dla Y tshy, która zostałaby dokonana w czasie t-1, jest równa L t-1 T t-1. Gdy obserwowana jest wartość rzeczywista, zaktualizowana estymacja poziomu jest obliczana rekurencyjnie poprzez interpolację między Y tshy i jej prognozą L t-1 T t-1, przy użyciu wag o wartości 945 i 1-945. Zmiana szacowanego poziomu, mianowicie L t 8209 L t82091. można interpretować jako hałaśliwy pomiar trendu w czasie t. Zaktualizowane oszacowanie trendu jest następnie obliczane rekursywnie przez interpolację pomiędzy L t 8209 L t82091 a poprzednim oszacowaniem trendu, T t-1. używając ciężarów 946 i 1-946: Interpretacja stałej wygładzania trendu 946 jest analogiczna do stałej wygładzania poziomu 945. Modele o małych wartościach 946 przyjmują, że trend zmienia się bardzo powoli w czasie, natomiast modele z większe 946 zakłada, że ​​zmienia się szybciej. Model z dużym 946 uważa, że ​​odległe jutro jest bardzo niepewne, ponieważ błędy w oszacowaniu trendów stają się dość ważne przy prognozowaniu na więcej niż jeden okres. (Powrót do początku strony.) Stałe wygładzania 945 i 946 można oszacować w zwykły sposób, minimalizując średni błąd kwadratowy prognoz 1-krokowych. Po wykonaniu tej czynności w Statgraphics, szacunkowe wartości wynoszą 945 0,3048 i 946 0,008. Bardzo mała wartość wynosząca 946 oznacza, że ​​model przyjmuje bardzo niewielką zmianę trendu z jednego okresu do drugiego, więc w zasadzie ten model próbuje oszacować długoterminowy trend. Analogicznie do pojęcia średniego wieku danych, które są używane do oszacowania lokalnego poziomu serii, średni wiek danych wykorzystywanych do oszacowania lokalnego trendu jest proporcjonalny do 1 946, chociaż nie jest dokładnie taki sam jak ten. . W tym przypadku okazuje się, że jest to 10.006 125. Nie jest to bardzo dokładna liczba, ponieważ dokładność oszacowania 946 wynosi 2182 tak naprawdę 3 miejsca po przecinku, ale jest tego samego ogólnego rzędu wielkości co wielkość próby 100, więc model ten uśrednia dość długą historię w szacowaniu trendu. Poniższy wykres prognozy pokazuje, że model LES szacuje nieco większy lokalny trend na końcu serii niż stały trend oszacowany w modelu SEStrend. Szacowana wartość 945 jest prawie identyczna z wartością uzyskaną przez dopasowanie modelu SES z trendem lub bez niego, więc jest to prawie ten sam model. Teraz, czy wyglądają one jak rozsądne prognozy dla modelu, który ma oszacować lokalny trend Jeśli wyobrazisz sobie 8220eyeball8221 ten wykres, wygląda na to, że lokalny trend spadł na końcu serii Co się stało Parametry tego modelu zostały oszacowane poprzez zminimalizowanie błędu kwadratów prognoz 1-krok naprzód, a nie prognoz długoterminowych, w którym to przypadku trend doesn8217t robi dużą różnicę. Jeśli wszystko, na co patrzysz, to błędy 1-etapowe, nie widzisz większego obrazu trendów w ciągu (powiedzmy) 10 lub 20 okresów. Aby uzyskać ten model lepiej dopasowany do ekstrapolacji danych przez gałkę oczną, możemy ręcznie dostosować stałą wygładzania trendu, aby wykorzystała krótszą linię podstawową do oszacowania trendu. Na przykład, jeśli zdecydujemy się ustawić 946 0,1, średnia wieku danych wykorzystywanych do oszacowania trendu lokalnego wynosi 10 okresów, co oznacza, że ​​uśredniamy trend w ciągu ostatnich 20 okresów. W tym przypadku wygląda wykres prognozy, jeśli ustawimy 946 0,1, zachowując 945 0,3. Jest to intuicyjnie uzasadnione dla tej serii, chociaż prawdopodobnie ekstrapolowanie tego trendu prawdopodobnie nie będzie dłuższe niż 10 okresów w przyszłości. A co ze statystykami błędów? Oto porównanie modeli dla dwóch modeli pokazanych powyżej oraz trzech modeli SES. Optymalna wartość 945. Dla modelu SES wynosi około 0,3, ale podobne wyniki (z odpowiednio mniejszą lub większą reaktywnością) uzyskuje się przy 0,5 i 0,2. (A) Holts linear exp. wygładzanie z alfa 0,3048 i beta 0,008 (B) Holts linear exp. wygładzanie z alfa 0.3 i beta 0.1 (C) Proste wygładzanie wykładnicze z alfa 0,5 (D) Proste wygładzanie wykładnicze z alfa 0.3 (E) Proste wygładzanie wykładnicze z alfa 0.2 Ich statystyki są prawie identyczne, więc naprawdę nie możemy dokonać wyboru na podstawie błędów prognozy 1-krokowej w ramach próby danych. Musimy odwołać się do innych kwestii. Jeśli mocno wierzymy, że oparcie obecnego szacunku trendu na tym, co wydarzyło się w ciągu ostatnich 20 okresów, ma sens, możemy postawić argumenty za modelem LES z 945 0,3 i 946 0,1. Jeśli chcemy być agnostyczni w kwestii, czy istnieje lokalny trend, to jeden z modeli SES może być łatwiejszy do wyjaśnienia, a także dałby więcej prognoz w połowie drogi na następne 5 lub 10 okresów. (Powrót do początku strony.) Który rodzaj ekstrapolacji trendów jest najlepszy: poziomy lub liniowy Dowody empiryczne sugerują, że jeśli dane zostały już skorygowane (w razie potrzeby) o inflację, może być nieostrożnością ekstrapolować krótkoterminowe liniowe trendy bardzo daleko w przyszłość. Dzisiejsze trendy mogą się w przyszłości zanikać ze względu na różne przyczyny, takie jak starzenie się produktów, zwiększona konkurencja i cykliczne spadki lub wzrosty w branży. Z tego powodu proste wygładzanie wykładnicze często zapewnia lepszą pozapróbkę, niż można by się było tego spodziewać, pomimo cytowania ekwiwalentu trendów poziomych. Tłumione modyfikacje trendów liniowego modelu wygładzania wykładniczego są również często stosowane w praktyce, aby wprowadzić nutę konserwatyzmu do swoich projekcji trendów. Model LES z tłumioną tendencją może być zaimplementowany jako specjalny przypadek modelu ARIMA, w szczególności modelu ARIMA (1,1,2). Możliwe jest obliczenie przedziałów ufności wokół długoterminowych prognoz generowanych przez modele wygładzania wykładniczego, poprzez uznanie ich za szczególne przypadki modeli ARIMA. (Uwaga: nie wszystkie programy poprawnie obliczają przedziały ufności dla tych modeli). Szerokość przedziałów ufności zależy od (i) błędu RMS modelu, (ii) rodzaju wygładzania (prostego lub liniowego) (iii) wartości (s) stałej (ów) wygładzania (-ych) i (iv) liczbę okresów, które prognozujesz. Ogólnie rzecz biorąc, interwały rozkładają się szybciej, gdy 945 staje się większy w modelu SES i rozprzestrzeniają się znacznie szybciej, gdy stosuje się liniowe zamiast prostego wygładzania. Ten temat jest omówiony dalej w sekcji modeli ARIMA notatek. (Powrót do początku strony.) 2.1 Modele średniej ruchomej (modele MA) Modele serii czasowej znane jako modele ARIMA mogą zawierać terminy autoregresyjne i średnie ruchome. W pierwszym tygodniu poznaliśmy pojęcie autoregresji w modelu szeregów czasowych dla zmiennej x t jest opóźnioną wartością x t. Na przykład, pojęcie autoregresyjnego opóźnienia 1 to x t-1 (pomnożone przez współczynnik). Ta lekcja definiuje średnie ruchome terminy. Zmienna średnia krocząca w modelu szeregów czasowych to błąd z przeszłości (pomnożony przez współczynnik). Niech (wt overset N (0, sigma2w)), co oznacza, że ​​w t są identycznie, niezależnie rozmieszczone, każdy z rozkładem normalnym mającym średnią 0 i taką samą wariancję. Model średniej ruchomej pierwszego rzędu oznaczony jako MA (1) to (xt mu theta1w). Model średniej ruchomej drugiego rzędu oznaczony jako MA (2) to (xt. Mu theta1w theta2w). Model średniej ruchomej kw. Rzędu oznaczony jako MA (q) to (xt mu wt. theta1w theta2w dots thetaqw) Uwaga. Wiele podręczników i programów definiuje model z negatywnymi znakami przed terminami. Nie zmienia to ogólnych teoretycznych właściwości modelu, mimo że odwraca algebraiczne znaki szacowanych wartości współczynników i (nieakwadowanych) terminów w formułach dla ACF i wariancji. Musisz sprawdzić oprogramowanie, aby sprawdzić, czy zostały użyte negatywne lub pozytywne znaki, aby poprawnie zapisać oszacowany model. R używa pozytywnych znaków w swoim podstawowym modelu, tak jak my tutaj. Teoretyczne właściwości szeregu czasowego z modelem MA (1) Należy zauważyć, że jedyną niezerową wartością w teoretycznym ACF jest dla opóźnienia 1. Wszystkie inne autokorelacje wynoszą 0. Zatem próbka ACF ze znaczącą autokorelacją tylko w opóźnieniu 1 jest wskaźnikiem możliwego modelu MA (1). Dla zainteresowanych studentów, dowody tych właściwości są załącznikiem do tej ulotki. Przykład 1 Załóżmy, że model MA (1) to x t 10 w t .7 w t-1. gdzie (wt overset N (0,1)). Zatem współczynnik 1 0,7. Teoretyczny ACF jest podany przez A wykres tego ACF. Przedstawiony wykres jest teoretycznym ACF dla MA (1) z 1 0,7. W praktyce próbka zwykle zapewnia tak wyraźny wzór. Korzystając z R, symulowaliśmy n 100 wartości próbek, stosując model x t 10 w t .7 w t-1, gdzie w tid N (0,1). W przypadku tej symulacji następuje wykres serii danych przykładowych. Nie możemy wiele powiedzieć z tego spisku. Wyświetlany jest przykładowy ACF dla symulowanych danych. Widzimy skok w opóźnieniu 1, po którym następują ogólnie nieistotne wartości opóźnień po 1. Należy zauważyć, że próbka ACF nie pasuje do teoretycznego wzoru leżącego u podstaw MA (1), co oznacza, że ​​wszystkie autokorelacje dla opóźnień minionych 1 będą wynosić 0 Inna próbka miałaby nieco inny przykładowy ACF pokazany poniżej, ale prawdopodobnie miałby te same szerokie funkcje. Teoretyczne właściwości szeregu czasowego z modelem MA (2) Dla modelu MA (2), właściwości teoretyczne są następujące: Należy zauważyć, że jedyne niezerowe wartości w teoretycznym ACF dotyczą opóźnień 1 i 2. Autokorelacje dla wyższych opóźnień wynoszą 0 Tak więc, próbka ACF ze znaczącymi autokorelacjami w opóźnieniach 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazuje na możliwy model MA (2). iid N (0,1). Współczynniki wynoszą 1, 0,5 i 2 0,3. Ponieważ jest to MA (2), teoretyczny ACF będzie miał niezerowe wartości tylko w opóźnieniach 1 i 2. Wartości dwóch niezerowych autokorelacji to wykres teoretycznego ACF. Jak prawie zawsze, dane przykładowe nie zachowują się tak doskonale, jak teoria. Przeprowadzono symulację wartości 150 próbek dla modelu x t 10 w t .5 w t-1 .3 w t-2. gdzie z tid N (0,1). Następnie następuje seria danych czasowych. Podobnie jak w przypadku wykresu szeregów czasowych dla przykładowych danych MA (1), nie można wiele z nich powiedzieć. Wyświetlany jest przykładowy ACF dla symulowanych danych. Wzór jest typowy w sytuacjach, w których może być przydatny model MA (2). Istnieją dwa istotne statystycznie skoki w opóźnieniach 1 i 2, a następnie nieistotne wartości dla innych opóźnień. Zauważ, że z powodu błędu próbkowania, próbka ACF nie zgadzała się dokładnie z modelem teoretycznym. ACF dla modeli MA (q) Ogólne Właściwość modeli MA (q) ogólnie jest taka, że ​​istnieją niezerowe autokorelacje dla pierwszych q opóźnień i autokorelacji 0 dla wszystkich opóźnień gt q. Niejednoznaczność połączenia między wartościami 1 i (rho1) w modelu MA (1). W modelu MA (1) dla dowolnej wartości 1. odwrotność 1 1 daje tę samą wartość Jako przykład, użyj 0.5 dla 1. a następnie użyj 1 (0,5) 2 dla 1. Dostaniesz (rho1) 0,4 w obu przypadkach. Aby spełnić teoretyczne ograniczenie zwane odwracalnością. ograniczamy MA (1) modelom do wartości z wartością bezwzględną mniejszą niż 1. W podanym przykładzie 1 0,5 będzie dopuszczalną wartością parametru, a 1 10,5 2 nie. Odwracalność modeli MA Model MA jest uważany za odwracalny, jeśli jest algebraicznie równoważny z konwergentnym nieskończonym modelem AR rzędu. Przez konwergencję rozumiemy, że współczynniki AR zmniejszają się do 0, gdy cofamy się w czasie. Odwracalność jest ograniczeniem zaprogramowanym w oprogramowaniu szeregów czasowych służącym do oszacowania współczynników modeli z warunkami MA. To nie jest coś, co sprawdzamy w analizie danych. Dodatkowe informacje na temat ograniczeń odwracalności modeli MA (1) podano w załączniku. Advanced Theory Note. W przypadku modelu MA (q) z określonym ACF istnieje tylko jeden odwracalny model. Warunkiem koniecznym do odwrócenia jest to, że współczynniki mają wartości takie, że równanie 1- 1 y-. - q y q 0 ma rozwiązania dla y, które wypadają poza kółkiem jednostki. Kod R dla przykładów W przykładzie 1, narysowaliśmy teoretyczny ACF modelu x t 10 w t. 7w t-1. a następnie zasymulowano wartości n 150 z tego modelu i wykreślono serie czasowe próbek oraz próbkę ACF dla symulowanych danych. Polecenia R użyte do wykreślenia teoretycznego ACF to: acfma1ARMAacf (mac (0.7), lag. max10) 10 opóźnień ACF dla MA (1) z theta1 0.7 lags0: 10 tworzy zmienną o nazwie opóźnienia, która mieści się w zakresie od 0 do 10. wykres (opóźnienia, acfma1, xlimc (1,10), ylabr, typeh, główne ACF dla MA (1) z theta1 0.7) abline (h0) dodaje oś poziomą do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie o nazwie acfma1 (nasz wybór nazwy). Polecenie fabuły (polecenie 3) wykreśla opóźnienia w stosunku do wartości ACF dla opóźnień od 1 do 10. Parametr ylab oznacza oś y, a parametr główny umieszcza tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF, wystarczy użyć polecenia acfma1. Symulacja i wykresy zostały wykonane za pomocą następujących poleceń. xcarima. sim (n150, list (mac (0.7))) Symuluje n 150 wartości z MA (1) xxc10 dodaje 10, aby uzyskać średnią 10. Domyślne wartości symulacji do średniej 0. wykres (x, typb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF dla symulowanych danych próbki) W Przykładzie 2, wyliczyliśmy teoretyczny ACF modelu xt 10 wt .5 w t-1 .3 w t-2. a następnie zasymulowano wartości n 150 z tego modelu i wykreślono serie czasowe próbek oraz próbkę ACF dla symulowanych danych. Zastosowano następujące komendy R: acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 wykres lags0: 10 (opóźnienia, acfma2, xlimc (1,10), ylabr, typeh, główny ACF dla MA (2) z theta1 0.5, theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) wykres xxc10 (x, typb, główna symulowana seria MA (2)) acf (x, xlimc (1,10), mainACF dla symulowanych danych MA (2) Załącznik: Dowód właściwości MA (1) Dla zainteresowanych studentów, tutaj są dowody na teoretyczne właściwości modelu MA (1). Wariancja: (tekst (xt) tekst (mu wt theta1 w) 0 tekst (wt) tekst (theta1w) sigma2w theta21sigma2w (1teta21) sigma2w) Gdy h 1, poprzednie wyrażenie 1 w 2. Dla dowolnego h 2, poprzednie wyrażenie 0 Powodem jest to, że z definicji niezależności wt. E (w k w j) 0 dla dowolnego k j. Ponadto, ponieważ w t mają średnią 0, E (wj w j) E (wj2) w 2. W przypadku szeregu czasowego Zastosuj ten wynik, aby uzyskać powyższy ACF. Odwracalny model MA to taki, który można zapisać jako nieskończony model AR rzędu, który zbiega się tak, że współczynniki AR zbiegają się do 0, gdy cofamy się w nieskończoność w czasie. Dobrze demonstruje odwzorowanie modelu MA (1). Następnie podstawiamy relację (2) dla w t-1 w równaniu (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) W czasie t-2. równanie (2) staje się wtedy zastępujemy zależności (4) dla w t-2 w równaniu (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z-teta1w) wt theta1z - theta12z theta31w) Jeśli mielibyśmy kontynuować ( w nieskończoność), otrzymalibyśmy nieskończony porządek modelu AR (zt wt theta1 z - theta21z theta31z - theta41z dots) Zwróć jednak uwagę, że jeśli 1 1, współczynniki pomnożące opóźnienia z wzrosną (nieskończenie) w miarę, jak cofniemy się w czas. Aby temu zapobiec, potrzebujemy 1 lt1. Jest to warunek dla odwracalnego modelu MA (1). Nieskończony model MA zamówienia W tygodniu 3, zobacz, że model AR (1) można przekonwertować do modelu MA nieskończonego rzędu: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w) To podsumowanie ostatnich terminów białego szumu jest znane jako przyczynową reprezentację AR (1). Innymi słowy, x t jest szczególnym rodzajem MA z nieskończoną liczbą terminów cofających się w czasie. Nazywa się to nieskończonym porządkiem MA lub MA (). MA skończonego porządku jest nieskończonym porządkiem AR, a każde skończone zamówienie AR jest nieskończonym zleceniem MA. Przypomnijmy w Tygodniu 1, że zauważyliśmy, że warunkiem stacjonarnego AR (1) jest 1 lt1. Pozwala obliczyć Var (x t) za pomocą reprezentacji przyczynowej. Ten ostatni krok wykorzystuje podstawowy fakt o szeregach geometrycznych, które wymagają (phi1lt1), w przeciwnym razie seria się rozbiega. Nawigacja8.4 Modele średniej ruchomej Zamiast używać wartości z przeszłości dla zmiennej prognozowanej w regresji, model średniej ruchomej wykorzystuje błędy przeszłości prognozowanej w modelu podobnym do regresji. y c et theta e theta e dots theta e, gdzie et jest białym szumem. Mówimy o tym jako o modelu MA (q). Oczywiście nie obserwujemy wartości et, więc nie jest to regresja w zwykłym sensie. Zauważ, że każdą wartość yt można uważać za ważoną średnią ruchomą z kilku ostatnich błędów prognozy. Jednak modeli średniej ruchomej nie należy mylić ze średnią ruchomą, o której mówiliśmy w Rozdziale 6. Model średniej ruchomej jest używany do prognozowania przyszłych wartości, podczas gdy średnia ruchoma służy do oszacowania trendu w przeszłych wartościach. Rysunek 8.6: Dwa przykłady danych z modeli średniej ruchomej o różnych parametrach. Po lewej: MA (1) z y t 20e t 0,8 e t-1. Po prawej: MA (2) z y t e t e t-1 0,8 e t-2. W obu przypadkach, e t jest normalnie rozproszonym szumem białym o średniej zero i wariancji jeden. Rysunek 8.6 pokazuje niektóre dane z modelu MA (1) i MA (2). Zmiana parametrów theta1, dots, thetaq skutkuje różnymi wzorami szeregów czasowych. Podobnie jak w przypadku modeli autoregresyjnych, wariancja terminu błędu et zmieni jedynie skalę serii, a nie wzory. Możliwe jest zapisanie dowolnego stacjonarnego modelu AR (p) jako modelu MA (infty). Na przykład, używając powtórnej substytucji, możemy to zademonstrować dla modelu AR (1): zacząć yt amp phi1y i amp phi1 (phi1y e) i amp phi12y phi1 e i amp phi13y phi12e phi1 e et amptext end Provided -1 lt phi1 lt 1, wartość phi1k będzie się zmniejszać, gdy k będzie większe. Tak więc ostatecznie otrzymujemy yt et phi1 e phi12 e phi13 e cdots, proces MA (infty). Odwrotny wynik ma miejsce, jeśli nałożymy pewne ograniczenia na parametry MA. Następnie model MA nazywa się odwracalnym. Oznacza to, że możemy zapisać każdy odwracalny proces MA (q) jako proces AR (infty). Modele odwracalne nie umożliwiają po prostu konwersji z modeli MA na modele AR. Mają również pewne właściwości matematyczne, które ułatwiają ich stosowanie w praktyce. Ograniczenia odwracalności są podobne do ograniczeń stacjonarności. Dla modelu MA (1): -1lttheta1lt1. Dla modelu MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - theta2 lt 1. Bardziej skomplikowane warunki utrzymują qge3. Ponownie, R będzie dbać o te ograniczenia podczas estymacji modeli.

No comments:

Post a Comment